skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Arbee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A skyline query searches the data points that are not dominated by others in the dataset. It is widely adopted for many applications which require multi-criteria decision making. However, skyline query processing is considerably time-consuming for a high-dimensional large scale dataset. Parallel computing techniques are therefore needed to address this challenge, among which MapReduce is one of the most popular frameworks to process big data. A great number of efficient MapReduce skyline algorithms have been proposed in the literature and most of their designs focus on partitioning and pruning the given dataset. However, there are still opportunities for further parallelism. In this study, we propose two parallel skyline processing algorithms using a novel LShape partitioning strategy and an effective Propagation Filtering method. These two algorithms are 2Phase LShape and 1Phase LShape, used for multiple reducers and single reducer, respectively. By extensive experiments, we verify that our algorithms outperformed the state-of-the-art approaches, especially for high-dimensional large scale datasets. 
    more » « less